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1 INTRODUCTION

In preparation for an experimental evaluation of the photogramnetry
method for mode shape measurement, a steel specimen consisting
essentially of a cantilevered plate, welded along one edge to a
supporting member, was required. To provide a rigorous test of the
photogrammetry technique, the cantilevered plate was required to be
about one metre square, the modal amplitude to have a maximum value of ±
1.5 mm and the natural frequency of a multi-node mode to be about 25 Hz.
This report describes the theory used to determine the plate dimensions,
and gives a comparison of the theoretical mode shape with that measured
by traditional methods. In a subsequent report this measured mode shape
will be further compared with the one obtained by photogrammetry.

2 THEORETICAL ANALYSIS

Assuming that the supporting structure is rigid, the problem
reduces to the analysis of a steel plate built in along one edge, with
the other three edges free. Reference 1 provides simple formulae for
calculating the natural frequencies and mode shapes of the first five
modes of a square plate supported in this way. The modal amplitude may
then be calculated from the known input force and the assumed value for
the damping coefficient of the material. The fourth mode was selected
and, in order to give the desired natural frequency, the thickness of
the plate was set at three millimetres. One metre square steel plate
was not available in this thickness so the specimen was made 1022 mm by
902 mm, with the shorter side being built in.

However since the plate is now not square the simplified formulae
of Reference 1 no longer strictly apply and the appropriate mode shapes
and natural frequencies were calculated in the following manner.

2.1 Modal Functions

Figure 1 shows the coordinate system for the cantilevered plate.
Define two non-dimensional coordinates 4 and n as follows

= x/a , n = y/b (1)

where a and 2b are the lengths of the free and fixed edge respectively.
Following Reference 1, the plate mode shape is expanded in terms of beam



functions. These beam functions satisfy the beam boundary conditions
corresponding to the free and clamped edges but their product does not
satisfy the plate boundary conditions exactly.

In the x direction define the function

y0(4) = ali(cosh cti4 - cos ci ) + bli(sinh aiA - sin ai4) (2)

where ai, the spatial frequency, is the i'th root of the non-linear
equation

cosa cosha = -1 (3)

(See Appendix A for discussion on the solution of this transcendental
equation.) The coefficients ali and b1i are then given by

(l- 2(cosha i + cosa) (4)
l=(1-.i) [eai(l+2sinai) + cosa i - sinai]

= 2(-sinhao + sinai) (5)
(le-) [eai(l+2sin) + cosa i - sina1i

The plate is symmetric about the x axis, so the modal functions in

the y direction are separated into symmetric and antisymmetric groups.
The antisymmetric functions ya are defined by

Wap(1T) = a2 j sinh Oji + b2 i sin Pjy (6)

where the spatial frequency Pj is the j'th root of the equation

tan P = tanh P (7)

and

a2j = cospi (8)
cospj sinhpj + sinpj coshpj

= coshp, (9)
cospj sinhpj + sinpj coshpj

Equation 7 has a zero root (j=l) and the corresponding modal function is
determined from l'Hopital's Rule to be

V ' (T (10)
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The corresponding symmetric functions are

W'j(71) = a3j cosh yj + b3j COS j (ii)

where Yj is the j'th root of

can y = -tanh y (12)

and

a3j = (13)2coshyj

1
b3j = 1 (14)2cosyj

Equation 12 also has a zero root, and the corresponding modal function
is then simply

W .0 = 1 (15)

(See Appendix A for a discussion on the solution of equations 3, 7 and
12.)

A general mode of vibration may then be represented by the
following bi-orthogonal expansion.

W(4,i) = -1 . { Mj wi(p ) Waj (n) + Nij 9j(4)W8 j(Tj) (16)

where W(4,q) is a normal mode. Since the plate is homogeneous and of
uniform thickness all the normal modes of the plate are either exactly
symmetric or antisymmetric about the x (or ,) axis. That is, for any
one mode W(4,ij) then for all i,j either Mij = 0 or Nij = 0. In this
case the mode of interest is symmetric so equation 16 may be simplified
to

W(4,Tl) = Z - 1 - Nij pj(4)W.j(Tj) (17)

The set of modal functions used is of course not infinite but is
truncated. In this case equation 17 becomes

W( , =j., Nij (i (4) J (in) (18)



2.2 Plate Equation Of Motion

As stated in Reference 1, the classical equation of motion for
plate dynamics is

2w

DV w + a -L = 0 (19)

Eh
3

where D = 12 ( -2)

v is Poisson's ratio, o is the plate area density, V 2 is the Laplacian
operator, E is Young's modulus, h is the plate thickness and w( ,r,t) is
the plate transverse motion.

2 
2  2

ax 2 +y 2

2 2
+ ?(20)

V 4  
2 a4  

1 4

a , a a b OMr b a
For sinusoidal motion we may write

w( ,11,t) = W(4,l)e iat (22)

Substituting this into equation 19 leads to

(DV4 -02 )W = 0 (23)

which is a single scalar equation with unknowns Ni± and o . If the
functions y and # satisfied all the plate boundary conditions then
Galerkin's method could be used to transform this scalar equation into
an eigenvalue equation, with the eigenvalues giving o and the elements
of each eigenvector being the corresponding values of Nij. But the
products cp satisfy only the geometric (clamped edge) boundary
conditions, so the Rayleigh-Ritz method which gi'res solutions that
inherently satisfy the natural (free edges) boundary conditions is used.
This provides estimates of the first p ( p S nm ) natural frequencies
and mode shapes, with the lower order modes being better estimated than
the higher (due to truncation effects).

4



The shaker has a low armature mass (230 grams) and its natural
frequency is approximately that of the mode of interest, so the effect
of the shaker on the relevant natural frequency and mode shape is
minimal. The calculated mode shape is shown in terms of its contours in
Figure 2.

3 EXPERIMENTAL MEASUREMENT

The structural damping in the plate is sufficiently low
(approximately 0.1%) for a normal mode to be excited with a single
shaker, provided the excitation is not at a nodal line. An array of
measuring stations was mapped out on the plate (Figure 3) which was then
excited sinusoidally at 27.2 Hz to produce the required mode. A
travelling accelerometer was used to measure the modal displacements at
these points, and the beam functions of the previous section were fitted
by a least squares process to these displacements to produce the
contours shown in Figure 4. Note that both the symmetric and
antisym retric W functions were utilised to allow for possible asymmetry
of the plate. (See Appendix B for a more general interpolation scheme.)

4 DISCUSSION

The natural frequency of the mode of interest was calculated to be
23.6 Hz whilst the measured natural frequency was 27.2 Hz. The free
shaker has a natural frequency of 25 Hz and was attached to the plate at
a point of relatively low amplitude in this mode, so it is not
responsible for the frequency discrepancy. Also it is extremely
difficult to build a plate which is truely "built in" along one edge as
there is nearly always some motion at this edge. This should have led
to the theoretical procedure overestimating the natural frequency rather
than underestimating it. The plate was tested in the horizontal
position which gave rise to a static deflection of about 66 mm along the
free edge. Also it was welded to the mounting along the "built in" edge
which distorted the plate somewhat such that it was no longer planar and
this, coupled with the curvature resulting from the static deflection,
gives rise to a greater stiffness than that of a flat plate.

The natural frequency of this mode (as of the other modes of the
plate) is dependent on both the overall size of the plate and its aspect
ratio (the ratio of a to 2b in Figure 1). If, due to non-planar
distortion of the plate near the clamped edge, the "effective" length of
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the cantilever were reduced, the fourth natural frequency would rise,
giving better agreement with experiment. For example, if "a" were

reduced by 20%, the natural frequency of this mode would rise by about
11%.

The two mode shapes are displayed in Figures 2 and 4. The latter
figure shows that the excited mode is not symmetric about the x axis

confirming the non-uniformity of the plate. Despite this, the main
region of difference between the two sets of contours is in the area of
the clamped edge. In Figure 2 the nodal lines run from the right hand
(free) edge to the left hand (clamped) edge whereas in Figure 4 the
nodal lines converge before reaching the clamped edge. The region of
difference is one of small slope in this mode and small perturbations in
amplitude result in significant changes in the contour pattern. The
distortions of the plate cited above may also result in a non-uniformity
of the stiffness distribution in this region. The correlation
coefficient calculated between the two modes at the measurement points
of Figure 3 is 0.946 which shows reasonable agreement.

5 CONCLUSION

Plate theory was used to design a specimen for use in a
photogrammetry experiment. Following construction of the specimen, the

natural frequency of the fourth mode was measured to be some 15% higher
than that predicted. This may be may be due to the distortions
introduced into the plate during fabrication and the static deformation
of the plate under gravity. Although this classical plate theory was
not adequate to predict accurately the dynamic behaviour of the
distorted plate, the resultant natural frequency and mode shape of the
test specimen satisfied the original requirements. i.e. to be suitable
for the photogrammetry experiment.

6 REFERENCE
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Figure 1. Rectangular cantilever plate, showing axis system
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Figure 2. Contours depicting calculated mode shape



Figure 3. Location of measuring points, X. and shaker, 0.
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Figure 4. Contours depicting measured mode shape



APPENDIX A

The three transcendental equations (3, 7 and 12) given in Section
2.1 must be solved for the spatial frequencies a , 0 and y This is
done by using the Newton-Raphson method with initial estimates suitable
to ensure a rapid rpte of convergence.

A sufficient condition for the Newton-Raphson procedure to converge
to a root of the equation

F(X)=O (A-1)

is given by the total stability theorem. That is, we may linearise the
equation

Xn+ 1 = Xn - F (Xn ) / F' (Xn) (A-2)

about X- and obtain

S~n~ = S, -F ' (Xn ) SXn  + F (X,) F" (Xn) SXn +HO
8Xn+ F' (Xn) (F' (Xn))2

= F(X')F" (Xn) BXn + HOT (A-3)

(F' (Xn ) )2

where HOT indicates higher order terms. Provided that HOT is bounded,
then the Newton-Raphson method will converge if

F(Xn) F"(Xn)! < 1 . (A-4)

(F' (Xn))2

A-i



Furthermore, the non-dimensional function

F= IF (Xn )F " (X n ) (A-5)

(F ' (X ) ) 2

measures the exponential rate of convergence of the n'th estimate, Xn,
towards the the correct value. For initial estimates, X0, "sufficiently
close" to a root of equation A-1, the rate of convergence after n
iterations, as indicated by p(Xn), will be be at least as fast as that
indicated by p(X0). That is,

P(X') < p(Xo)

Consider firstly equation 3 of Section 2.1. This may be written as

F(a) = cosr cosha + 1 = 0 (A-6)

F' (a) = -sina cosha + cosa sinh a

and F"(a) = -2sin(c) sinh(a)

p = (co s (x cosha + 1) (-2sina sinha) 1  (A-7)

(-sina cosha + cosa sinha) 2

Rewrite equation A-6 as

cosa -1/coshax

then as a -4- , cosa - 0. Thus for initial estimates take

0i= (2i-1)n/2 i=i,2,3 ..... (A-8)

Substituting these into equation A-7 gives

p(a 01 ) = 0.731

P(E02) = 0.0359

P(%3) = 0.0016

For larger values of i, p(aei)-4ea" .

A-2



Note that after two iterations these three convergence factors become

p(m ) = 0.0087

P(t22) = 0.23 X 10 -6
P(z 23 ) = 0.7 X i012

This indicates that convergence is rapid.

Similarly equation 7 may be written as

G(P) = tano - tanho = 0 (A-9)

G'(P) = tan23 + tanh2p

and G"(1) = 2(tano + tanhP + tan 3 - tanh 3p)

The convergence function is again

P(1) = G(P) G"(0) (A-10)

(G' (1))

and the initial estimates are given by

P3j = (4j-3)n/4 j=2,3,4 .... (A-I1)

Note that the first root of equation A-9 is P = 0, so this is not
obtained by iteration, and the corresponding modal function is

W .1i(TO = 7

Substituting the initial estimates (j=2,3,4..) into equation A-10 gives

P(0o2) = 0.7F X 10-
3

P(3o) 
= 0.14 X 10

- 5

p (004) 
= 0.27 X 10 - 8

For higher values of j, p(00j) - 2e-2P, again showing that convergence
is rapid.

The symetric functions from Section 2.1 lead to similar
expressions. In this case the initial estimates are given by

yo,= (4j-5)i/4 j=2,3,4 .... (A-12)

A-3



where again the first root is y = 0, and the corresponding modal

function is

W. (TO- 1

The corresponding convergence factors are

P(Y02) = 0.018
P (7 3) = 0.34 X - 7

P(Y04) = 0.63 X 10 -

and, as before, p(y0j) -.2e-2y for larger values of j, showing rapid
convergence.

A-4



APPENDIX B

As described in Section 3, beam functions with the correct boundary

conditions were used to interpolate the measured modal displacements to

sufficient other locations on the plate to produce the contours shown in
Figure 4. A more general interpolation technique which is not

constrained by particular edge conditions but which fits a surface of

minimum curvature to the measured mode shape may be used.

The equation which gives the displacement of an infinite plate

subjected to a number (n) of point loads is

w(x,y) = a + bx + cy + _ i fi ri log(r) (B-I)

where r1 = ((x-xi)2 + (y-yi)2))

and fi is the point load applied at the point (xi,yi)

This same equation results from the solution to the problem of fitting a
surface of minimum curvature with the constraint that it pass through n
points (xi,yi,wi ) where (xi,yi) are the coordinates of the i'th
measurement point and wi is the measured modal amplitude at this point.

Equation B-i may be evaluated at the n measurement points, leading
to n simultaneous equations in the n+3 unknowns a,b,c,f1 ,....f,. The
three extra equations result from the equilibrium conditions

ni-i fi = 0 (B-2)

i. fixi = 0 (B-3)

E1 f~y - 0 (B-4)

B-1



Note that these last three equations are independent of the measured
displacements, wi.

Ordering these equat-ns in the sequence B-2, B-3, B-4 and then the
n equations resulting from B-1, we may express the resulting n+3
simultaneous equations in matrix form as

U = J V (B-5)

where U is the vector of elements 0,0,0,w1,...,w n

V is the vector of elements a,b,c, fl,...,f n,
and J is a symmetric matrix.

For non-trivial solutions J may be inverted to give

V = j-1U (B-6)

Becaurz the first three elements of U are zero the matrix J-1 may be
partitioneo after the first three rows and columns, and the lower right
n x n submatrix extracted to give

F = K W (B-T)

where F is the vector of elements fl,...fn'
W is the vector of elements wI,. .Wn

and K is a synnetric submatrix of J1 .

Thus equation B-6 may be solved for the coefficients in Equation
B-i and the mode shape evaluated everywhere on the plate. However this
surface is constrained to pass exactly through the measured mode shape
displacements which are subject to measurement noise. Consequently it
is better to formulate the solution in terms of a "relaxed" least
squares problem subject to a constraint.

Returning to the analogy of the plate acting under point loads, the
work done in applying these loads is

work = FT W (B-8)

where the superscript T indicates transposition.
The work done equals the increase in potential energy of the deformed
plate and this in turn is related to the curvature of the plate. So to
minimise the curvature we may minimise the work. Thus the problem
becomes:

B-2



Minimise FT W

subject to the constraint

[W-W ] T [W-W ] = n a

where F is the vector of n coefficients fi,
W* is the vector of "noisy" measured displacements,
W is the vector of "true" displacements (i.e. without measurement

noise)
and a2 is the variance of the measurement noise.

Using Lagrange multipliers this may be written as

0.5 FT W +0.5 X [W-W.]T [W-W-] = E (B-9)

Substituting Equation B-7 into Equation B-9 gives

0.5 WT K W +0.5 ? [W-W*] T [W-W-] = E (B-10)

Application of the Variational Principle gives

M + LI) W = X W. (B-I1)

where I is the unit matrix.

Put F = 1/A (B-12)

Then Equation B-11 becomes

[I + EK] W = W (B-13)

It is then required to find the unique e such that the vector W obtained
from equation B-13 satisfies the equation

[W-W*]T [W-W*] - n o 2 =0 (B-14)

This may be done by iteration with the initial value of e being

SINITIAL = Trace(K) (B-15)

In the present case (a cantilever plate) the edge conditions are
well stated and the corresponding beam functions have already been
determined for the theoretical analysis of Section 2. Consequently
these beam functions are best used for interpolation here. However in a

B-3



more general problem the necessary beam functions may not be readily
available and the application of the approach in this appendix may be
useful.

B-4
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